Contributions of Gene Variants, Endorphins, and Stress Responsivity to Specific Addictions and Treatment

Mary Jeanne Kreek, M.D. Patrick E. and Beatrice M. Haggerty Professor Head of Laboratory The Laboratory of the Biology of Addictive Diseases The Rockefeller University Senior Physician The Rockefeller University Hospital

> October 12, 2011 THS Congress 10 Biarritz, France



funded primarily by NIH-NIDA, NIH-NIMH, NIHCRR

### **Development of Methadone Maintenance Treatment – 1964 Onward**

**<u>HYPOTHESIS</u>**: Heroin (opiate) addiction is a disease – a "metabolic disease" – of the brain with resultant behaviors of "drug hunger" and drug selfadministration, despite negative consequences to self and others. Heroin addiction is not simply a criminal behavior or due alone to antisocial personality or some other personality disorder.

Vincent P. Dole, Jr., MD; Marie Nyswander, MD; and Mary Jeanne Kreek, MD



First publications describing methadone maintenance treatment research

1) 1964: Initial clinical research on development of treatment using methadone maintenance pharmacotherapy and on elucidating mechanisms of efficacy performed at The Rockefeller Hospital of The Rockefeller Institute for Medical Research: Dole, V.P., Nyswander, M.E. and Kreek, M.J.: Narcotic blockade. Arch. Intern. Med., 118:304-309, 1966.

(also recorded in the Association of American Physicians meeting transcription of discussion)



2) <u>1965</u>: Translational applied clinical research performed at Manhattan General Hospital: Dole, V.P. and Nyswander, M.E.: A medical treatment for diacetylmorphine (heroin) addiction. <u>JAMA</u>, <u>193</u>:646-650, 1965. Dole, Nyswander and Kreek, 1966, 2006 Impact of Short-Acting Heroin versus Long-Acting Methadone Administered on a Chronic Basis in Humans: "On-Off" versus "Steady-State" – Relationship Between Blood/Brain Levels of Drugs of Abuse and Addictions



Rate of rise of blood (and presumable brain) levels of drugs of abuse are related positively to their reinforcing effects and rate of fall related to withdrawal and craving.



Dole, Nyswander and Kreek, 1966; Kreek et al., 1973; 1976; 1977; 1979; 1982; Inturrisi et al, 1973; 1984

## Methadone Maintenance Treatment for Opiate (Heroin) Addiction – 2010

Number of patients currently in treatment:

• USA: ~ 260,000 • Europe: ~ 500,000 • Rest of world: ~250,000

Efficacy in "good" methadone treatment programs using adequate doses (80 to 150mg/d):

Voluntary retention in treatment (1 year or more)

Continuing use of illicit heroin

Actions of methadone treatment:

- Prevents withdrawal symptoms and "drug hunger"
- Blocks euphoric effects of short-acting narcotics
- Allows normalization of disrupted physiology

Mechanism of action: Long-acting narcotic provides steady levels of opioid at specific receptor sites.

• methadone found to be a full mu opioid receptor agonist which internalizes like endorphins (beta-endorphin and enkephalins)



methadone also has modest NMDA receptor complex antagonism

~ 1 million worldwide

50 - 80% 5 - 20%

## Few Targeted Pharmacotherapies Available for Specific Addictive Diseases

I. Opiate Addiction (Heroin and Illicit Use of Opiate Medications)

- a. METHADONE (80 to 150 mg/d; 50-80%)\*\*
- b. **BUPRENORPHINE (+ NALOXONE) (40-50%)\* (\*\*\*)**
- [c. NALTREXONE ( <15%)\*\*]
- [d. SUSTAINED RELEASE NALTREXONE (<15%)\*\*]

#### II. Alcoholism

- a. NALTREXONE (30-40%)\*
- b. ACAMPROSATE (low in USA)

# III. Cocaine, Amphetamines and Other Stimulants NONE

(%) is % of unselected persons with specific addictions who can be retained voluntarily in treatment for 3 months (\*) or 12 months (\*\*), with moderate to high success in eliminating specific drug use.



\* Maximum effective dose, 24 or 32 sl, equivalent to 60 to 80 mg of methadone.

#### STRESS RESPONSIVITY: Hypothesis – Atypical Responsivity to Stressors, A Possible Etiology of Addictions – HPA Axis



Atypical responsivity to stress and stressors may, in part, contribute to the persistence of, and relapse to selfadministration of drugs of abuse and addictions. Such atypical stress responsivity in some individuals may exist prior to use of addictive drugs on a genetic or acquired basis, and lead to the acquisition of drug addiction.

Kreek, 1972; 1981; 1982; 1984 ... 2011

TOLERANCE/ADAPTATION OF STRESS RESPONSIVITY EFFECTS OF COCAINE- Cocaine Self-Administration by Rats Under Extended Access Conditions (18h): Effects on Plasma Corticosterone Levels



## Daily Intake of Cocaine During Extended Sessions





Picetti et al., <u>Psychopharmacology</u>, 211:313, 2010

## ACTH and CORT Levels 24 h After the Last Extended Self-Administration Session





Picetti et al., <u>Psychopharmacology</u>, 211:313, 2010

#### TOLERANCE/ADAPTATION OF STRESS RESPONSIVITY EFFECTS OF ALCOHOL – Plasma ACTH and Corticosterone Levels After Binge Pattern Alcohol Administration (po, 1.5g/kg/h x 3)





Zhou, Franck et al, <u>Alcohol. Clin. Exp. Res.</u> 24:1575, 2000

TOLERANCE/ADAPTATION OF STRESS RESPONSIVITY EFFECTS OF ALCOHOL – Effects of Naltrexone vs. Placebo in Alcoholics: Greater Alcohol-Induced HPA Activation Following Naltrexone Disinhibition of Mu Opioid Receptor Inhibition



O'Malley... Sinha, and Kreek, <u>Psychopharmacology</u> 160:19, 2002

#### **STRESS RESPONSIVITY –**

Heroin, Cocaine, and Alcohol Profoundly Alter Stress Responsive Hypothalamic-Pituitary-Adrenal (HPA) Axis: Normalization During Methadone Treatment

- Acute effects of opiates
- Chronic effects of short-acting opiates (e.g., heroin addiction)
- Opiate withdrawal effects \*
- Opioid antagonist effects
- Cocaine effects \*
- Alcohol effects

Suppression of HPA Axis (decrease levels of HPA hormones)

Activation of HPA Axis (increase levels of HPA Hormones)

• Chronic effects of long-acting opiate (e.g. methadone in maintenance treatment)

**Normalization of HPA Axis** 



\* Our challenge studies have shown that a relative and functional "endorphin deficiency" develops.

Kreek, 1972; 1973; 1987; 1992 ... 2010

#### Role of Mu Opioid Receptor and Related Endorphin Systems in Normal Physiological Functions\*

- Endogenous Response to Pain
- Neuroendocrine Functions
  - Stress responsive systems including hypothalamic-pituitary-adrenal axis
  - Reproductive function including hypothalamiac-pituitary-gonadal axis
- Immunological Function
- Gastrointestinal Function
- Cardiovascular Function
- Pulmonary Function
- ? Mood, Affect; Cognition



\* All disrupted by chronic abuse of the short acting opiate, heroin

Genetic Variants of the Human Mu Opioid Receptor: Single Nucleotide Polymorphisms in the Coding Region Including the Functional A118G (N40D) Variant

HYPOTHESIS

Gene variants:

 Alter physiology "PHYSIOGENETICS"

- Alter response to medications
  "PHARMACOGENETICS"
- Are associated with specific addictions





Bond, LaForge... Kreek, Yu, <u>PNAS</u>, <u>95</u>:9608, 1998

FUNCTIONAL MOP-r (A118G) VARIANT – Increased Binding and Coupling to G Protein-Activated, Inwardly Rectifying K<sup>+</sup>(GIRK) Channels by Beta-Endorphin at the Prototype A118A and A118G Variant of the Mu Opioid Receptor, but Lower Cell-Surface Receptor Binding and Bmax Levels and Lower Forskolin-Stimulated cAMP Accumulation than MOP-r Prototype (Stably Expressed in AV-12 or HEK293 Cells)



Kreek, Yuferov and LaForge, Eur. J. Pharmacol. <u>410</u> 2000; Kroslak et al., <u>J. Neurochem</u>. <u>103</u>:77, 2007

#### STRESS RESPONSIVITY – High Dose Opiate Antagonist Studies: Nalmefene (mu/kappa Directed) Causes Greater HPA Axis Activation Than Naloxone (mu Directed) in Normal Human Volunteers



Schluger, Ho, Borg, Porter, Maniar, Gunduz, Perret, King, and Kreek, <u>Alcohol. Clin. Exp. Res.</u>, <u>22</u>,1430, 1998

FUNCTIONAL MOP-r (A118G) VARIANT – "Physiogenetics" Related to A118G Variant of Human Mu Opioid Receptor Gene – Altered Stress Responsivity in Healthy Control Volunteers



Bart et al. <u>Neuropsychopharmacology</u>, <u>31</u>:2313-2317, 2006

Wand et al., <u>Neuropsychopharmacol</u>, <u>26</u>:106, 2002 Chong...Wand, <u>Neuropsychopharmacology</u>, <u>31</u>:204, 2006



### Dissecting the Hypothalamic-Pituitary-Adrenal Axis in Humans: Single-Dose (2.25g) Metyrapone Effects



Kreek, 1973, 1978, 2006; Kreek et al.1984; Schluger et al, <u>Neuropsychopharmacology, 24</u>:568, 2001; 2006 FUNCTIONAL MOP-r (A118G) VARIANT– Metyrapone Testing in Normal Volunteers: Plasma cortisol levels and resultant plasma ACTH levels and AUC at 9 a.m. (prior to metyrapone) and after 4 and 8 hours



## Association Between a Functional (A118G) Polymorphism in the mu Opioid Receptor Gene and Opiate Addiction in Central Sweden

|          | All Subjects        |                                | Swedish with Both Parents Swedish |                            |
|----------|---------------------|--------------------------------|-----------------------------------|----------------------------|
| Genotype | Controls<br>(n=170) | Opiate<br>Dependent<br>(n=139) | Controls<br>(n=120)               | Opiate Dependent<br>(n=67) |
| A/A      | 147                 | 98                             | 104                               | 46                         |
| A/G      | 21                  | 39                             | 15                                | 19                         |
| G/G      | 2                   | 2                              | 1                                 | 2                          |
|          |                     |                                |                                   |                            |

|                       | Opiate Dependent (n=139) | Control (n=170) |
|-----------------------|--------------------------|-----------------|
| G/G; A/G              | 41                       | 23              |
| A/A                   | 98                       | 147             |
| 118G Allele Frequency | 0.155                    | 0.074           |

RR = 2.86

λ<sub>(1)</sub>= 13.4

Thus, in the entire study group in this central Swedish population, Attributable Risk due to genotypes with a G allele in this population: 18% Attributable Risk due to genotypes with a G allele in Swedes w/ Swedish parents: 21% (with confidence interval ranges from 8.0 to 28.0%)

Bart G, Heilig M, LaForge KS... Ott J, Kreek MJ, et al., Molecular Psychiatry, 9:547, 2004

KR = 2.9.

## Association Between a Functional (A118G) Polymorphism in the mu Opioid Receptor Gene and Alcoholism in Central Sweden

|              | Swedish with two Swedish<br>parents |                    | Non-Swedish without Swedish<br>Parents |                   |
|--------------|-------------------------------------|--------------------|----------------------------------------|-------------------|
|              | Alcohol Dependent<br>(n=193)        | Control<br>(n=120) | Alcohol Dependent<br>(n=196)           | Control<br>(n=50) |
| A118         | 158                                 | 104                | 141                                    | 43                |
| A118G, G118G | 35                                  | 16                 | 55                                     | 7                 |

OR=1.92  $\chi^2_{(1)} = 7.18, p = 0.0074$ 

|                         | Alcohol Dependent (n=389) | Control (n=170) |
|-------------------------|---------------------------|-----------------|
| G/G; A/G                | 90                        | 23              |
| A/A                     | 299                       | 147             |
| 118G Allele Frequency * | 0.125                     | 0.074           |

\* Overall 118G Allele Frequency = 0.109

Thus, in the entire study group in this central Swedish population: Attributable Risk due to genotypes with a G allele: 11.1%

THE ROCKEFELLER UNIVERSITY (with confidence interval ranges from 3.6 to 18.0%)

Bart G, Kreek MJ, LaForge KS... Ott J, Heilig M, <u>Neuropsychopharmacology</u>, <u>30</u>:417, 2005

FUNCTIONAL MOP-r (A118G) VARIANT – "Pharmacogenetics" Related to A118G Variant of Human Mu Opioid Receptor Gene – Altered Stress Responsivity: Naltrexone Treatment of Alcoholics





Oslin et al., <u>Neuropsychopharmacology</u>, <u>28</u>: 1546, 2003; similar findings by Anton... Goldman et al., <u>Arch Gen Pscyh</u>, 65:135, 2008

#### ? FUNCTIONAL MOP-r (C17T) VARIANT– Association with Alcohol and with Cocaine Dependence in HIV+ or HIV- African American Women (Based on KMSK Cut-Off Scores)

|              | Unadjusted<br>Odds Ratio for<br>TT Genotype | Adjusted for<br>HIV-serostatus | Adjusted for HIV,<br>age, income, and<br>education |
|--------------|---------------------------------------------|--------------------------------|----------------------------------------------------|
| KMSK alcohol | 3.7 (1.6-8.4)                               | 3.6 (1.5-8.3)                  | 3.0 (1.1-8.0)                                      |
|              | p = 0.003                                   | p = 0.003                      | p = 0.03                                           |
| KMSK cocaine | 2.8 (1.8-6.4)                               | 2.7 (1.2-6.2)                  | 2.0 (0.8-5.2)                                      |
|              | p = 0.014                                   | p = 0.02                       | p = 0.14                                           |
| KMSK opiates | 1.5 (0.4-5.1)                               | 1.6 (0.5-5.6)                  | 1.4 (0.3-6.1)                                      |
|              | p = 0.53                                    | p = 0.46                       | p = 0.65                                           |





#### GWAS (10K) ARRAY – Genes with Possible Association with Opiate Addiction in Caucasian Subjects: Top Hypothesis-Generated "Hits"

| 101 Controls: No drug addiction (ASI criter | ria) |
|---------------------------------------------|------|
| 104 Former Severe Heroin Addicts            |      |

| Gene                      | Product                                         | Description                                                                       | P-Value      |
|---------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------|--------------|
| CRY1                      | Cryptochrome 1 (photolyase-like)                | Transports PER proteins to nucleus                                                | 0.0040 (1)   |
| GRM8                      | Metabotropic glutamate receptor subunit 8       | Presynaptic cleft in multiple brain regions                                       | 0.0052 (2)   |
| OPRM1                     | Mu opioid receptor                              | Site of action of opiates/<br>opioids, enkephalin,<br>β-endorphin, morphine, etc. | 0.0055 (3)   |
| GRM6                      | Metabotropic glutamate receptor subunit 6       | Post-synaptic cleft of ON-<br>bipolar cells                                       | 0.0071 (4)   |
| NR4A2<br>(NURR1)          | Nuclear receptor subfamily 4, group A, member 2 | Coexpressed with TH<br>Activates DAT                                              | 0.0312 (11)  |
| NOCKEFELLER<br>UNIVERSITY | Nie                                             | lsen et al. Molecular Psychiatry                                                  | 13: 417, 200 |

O.HUMAN'

#### HYPOTHESIS-DRIVEN SNP ARRAY (Using Illumina<sup>®</sup> GoldenGate Custom Array – 130 Genes, 1350 SNPs) – Study of Heroin Dependence in Caucasians

| SNP                        | Gene                       | nominal P value* |
|----------------------------|----------------------------|------------------|
| rs510769                   | mu-opioid receptor         | 0.0003           |
| rs3778151                  |                            | 0.0007           |
| rs6473797                  | kappa-opioid recepte       | <b>Or</b> 0.0009 |
| rs2236861                  |                            | 0.0029           |
| rs2236857                  | delta-opioid receptor      | 0.0125           |
| rs3766951                  |                            | 0.0165           |
| rs1534891                  | casein kinase 1, epsilon   | 0.0016           |
| rs694066                   | galanin                    | 0.0019           |
| rs3758987<br>* Allele test | serotonin receptor 3, subu | nit B 0.0170     |



#### HYPOTHESIS-DRIVEN SNP ARRAY (Using Illumina<sup>®</sup> GoldenGate Custom Array – 130 Genes, 1350 SNPs) – Study of Heroin Dependence in African Americans

| SNP              | Gene                              | nominal P value*        |
|------------------|-----------------------------------|-------------------------|
| rs731780         | Solute carrier family 29 member 1 | 0.0006                  |
| rs1650420        |                                   | 0.0006                  |
| rs6497730        |                                   | 0.0015                  |
| rs1070487        | Giutamate receptor 2A             | 0.0022                  |
| rs4587976        |                                   | 0.0039                  |
| rs5326           | Dopamine D(1) receptor            | 0.0029                  |
| rs971074         | Alcohol dehydrogenase 7           | 0.0035                  |
| rs1176724        | Serotonin receptor 3, subunit A   | 0.0048                  |
| <b>rs2289948</b> | Diazepam binding inhibitor        | 0.0170                  |
|                  | l evran et al                     | Genes Brain Behav 8:531 |

2009

# **Epigenetic Inheritance**

- The transmission of information to a daughter cell or from generation to generation that is not encoded in the DNA sequence
- DNA methylation and covalent histone modifications are the primary sources of epigenetic inheritance





Nielsen, Neuropsychopharmacology 34:867-873, 2009

Increased Methylation at Two of Eight CpG Dinucleotides in the OPRM1 Promoter Region in Caucasian Former Severe Heroin Addicts versus Controls





Nielsen, Neuropsychopharmacology 34:867-873, 2009

## Human prodynorphin gene: Chr 20pter-p12 Exon / intron organization and single nucleotide polymorphisms



#### Human prodynorphin gene: Chr 20pter-p12 Exon / intron organization and single nucleotide polymorphisms

8 - rs2235749\_C/T

- Three 3'UTR SNPs (rs910080, rs910079, and rs2235749) are in complete linkage disequilibrium (LD), and comprise two haplotype blocks: T-T-C or C-C-T;

- The haplotype C-C-T was significantly associated with cocaine dependence and cocaine/alcohol codependence (OR=2.32, experiment-wise p=0.015) in Caucasians.

Yuferov et al, Neuropsychopharmacology, 34:1185, 2009

## Preprodynorphin mRNA levels in the caudate from human post-mortem brains stratified by genotypes of PDYN gene



\* Haplotype C-C-T significantly associated with cocaine dependence and cocaine/ alcohol codependence (OR=2.32, experiment-wise p=0.015) in Caucasians.

Yuferov et al, Neuropsychopharmacology, 34:1185-1197, 2009

### Methylation rate at specific CpG sites of the human PDYN gene promoter in PBMCs and two human post-mortem brain regions



## P-glycoprotein (MDR1, ABCB1)



P-gp is expressed in tissues with barrier function like the endothelial cells lining of the Blood-Brain Barrier



Adapted from Ho et al., <u>Clin. Pharm. Ther.</u>, <u>78</u>: 260, 2005 and Tang et al., <u>Pharmacogenetics</u>, <u>12</u>: 437, 2002





PHARMACOGENOMICS – P-glycoprotein (MDR1, ABCB1): SNP 1236C>T (and Related Haplotype) Associated with Higher Methadone Doses (>150 mg/day) in Maintenance Treatment Patients



**P** = 0.007



P-gp is expressed in tissues with barrier function like the endothelial cells lining of the Blood-Brain Barrier

Levran... Kreek, Hum. Mol. Genet., <u>17</u>:2219, 2008

#### PHARMACOGENETICS – Allelic Variant of *NGFB* Gene Associated with Lower Methadone Dose in Maintenance Treatment Patients (n=72)





Levran... Kreek., Pharmacogenetics, in press, 2011

#### PHARMACOGENOMICS – CYP2B6 SNPs are Associated with Effective Methadone Dose (n=74) (516G>T and 785A>G)





\*\* Relative scale of contributors to stage of drug use/addiction:



Kreek, Nielsen, Butelman & LaForge, Nat Neurosci., 8:1450, 2005

للحلد

Intermittent

to

**Regular Use** 

Addiction

and

Relapse



## The Laboratory of the Biology of Addictive Diseases 2011-2012

Laboratory Scientists, Eduardo Butelman Yan Zhou Orna Levran Ann Ho Vadim Yuferov Dmitri Proudnikov Yong Zhang Brian Reed Roberto Picetti Stefan Schlussman

Research Physicians and Nurse Practitioners Lisa Borg Brenda Ray Elizabeth Ducat



Laboratory Manager Matthew Randesi Postdoctoral Fellows & Graduate Students Collene Lawhorn Keiichi Niikura Kate Seip Jilda Caccavo

**Assistants for Research** 

Adam Brownstein Michele Buonora Shasha Chen Brandan Mayer-Blackwell

#### **Administrative Staff**

Kitt Lavoie Rosanna Volchok Susan Russo **P60-Center** Collaborators/ Adjunct Faculty Miriam Adelson\* Gavin Bart \* **Paul Casadonte** Michael Glass James Kocsis\* **Diane Lane David Nielsen\* David Novick\*** Virginia Pickel\* John Rotrosen Ellen Unterwald\*

\*Adjunct Faculty



