Current Status of Mu Opioid Receptor Directed Treatments for Opioid Addiction and a New Target for Novel Treatments of Cocaine Addiction and Adjunctive Treatment of Other Addictions

Mary Jeanne Kreek, M.D.
Patrick E. and Beatrice M. Haggerty Professor
Head of Laboratory
The Laboratory of the Biology of Addictive Diseases
The Rockefeller University
Senior Physician,
The Rockefeller University Hospital

October 1, 2015
Biarritz, France

Funded primarily by NIH-NIDA (P50-05130), The Adelson Medical Research Foundation, NIH-NCRR (RUH – Dr B. Coller)
ADDICTION: Compulsive drug seeking behavior and drug self-administration, without regard to negative consequences to self or others (adapted from WHO).

Adapted from Kreek et al., *Nature Reviews Drug Discovery*, 1:710, 2002; 2013
Number of patients currently in treatment:

- USA: ~330,000
- Europe: ~600,000
- Rest of world: ~400,000

Efficacy in “good” methadone treatment programs using adequate doses (80 to 150mg/d):

- Voluntary retention in treatment (1 year or more): 50 – 80%
- Continuing use of illicit heroin: 5 – 20%

Actions of methadone treatment:

- Prevents withdrawal symptoms and “drug hunger”
- Blocks euphoric effects of short-acting narcotics
- Allows normalization of disrupted physiology

Mechanism of action: Long-acting medication (24h half-life for racemate in humans) provides steady levels of opioid at specific receptor sites.

- Methadone found to be a full mu opioid receptor agonist which internalizes like endorphins (beta-endorphin and enkephalins)
- Methadone also has modest NMDA receptor complex antagonism

Kreek, 1972; 1973; 2015

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Facilities</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methadone Maintenance Treatment</td>
<td>1,282</td>
<td>330,308</td>
</tr>
<tr>
<td>Buprenorphine Maintenance Treatment</td>
<td>3,113</td>
<td>48,148</td>
</tr>
<tr>
<td>Extended Release Naltrexone Treatment</td>
<td>1,718</td>
<td>3,781</td>
</tr>
</tbody>
</table>

Source: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. National Survey of Substance Abuse Treatment Services (N-SSATS), 2003-2014

Communication from: Cathie E. Alderks, PhD, Federal Project Officer, Behavioral Health Services Information System, Center for Behavioral Health Statistics and Quality, SAMHSA, 2015
Numbers of Methadone Maintenance Clinics and Patients in Selected Countries in Southeast Asia (2014)

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Methadone Clinics</th>
<th>Number of Patients in MMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainland China</td>
<td>767 clinics 29 Mobile Vans</td>
<td>184,000</td>
</tr>
<tr>
<td>Hong Kong SAR</td>
<td>20 clinics</td>
<td>7,100</td>
</tr>
<tr>
<td>Macao SAR</td>
<td>2 clinics</td>
<td>182</td>
</tr>
<tr>
<td>Taiwan</td>
<td>137 clinics</td>
<td>9,082</td>
</tr>
<tr>
<td>TOTAL</td>
<td>926 clinics 29 mobile vans</td>
<td>200,364</td>
</tr>
</tbody>
</table>

Methadone Treatment & Pain Management Conference
Macao SAR, China, April 19, 2015

Organized by:
Vong Yim Mui, *Deputy Director, Social Welfare Bureau, Government of Macao SAR*
Hon Wai, *Head of Department of Prevention and Treatment for Drug Dependence, Social Welfare Bureau, Government of Macao SAR*
Targets of Currently Approved Treatments for Addictive Disorders

Development of an Addiction: Neurobiology

• Drugs alter normal brain networks and chemicals

• “Rewarding” or “pleasurable” effects of drugs (the so-called “reinforcing effects”) involve:
 – Dopamine
 – Endorphins (acting at Mu Opioid Receptors)

• “Countermodulatory” response to reward involves:
 – Dynorphins (acting at Kappa Opioid Receptors)
REWARD — MU OPIOID RECEPTOR-ENDORPHIN SYSTEM: Mu Opioid Receptor Knock-Out Mice

• No morphine or other mu agonist analgesia
• No heroin or morphine self-administration
• No heroin or morphine induced conditioned place preference
• Attenuated self-administration of cocaine
• Attenuated self-administration of alcohol

Reviewed in Kreek et al., *Nature Reviews Drug Discovery*, 1:710-726, 2002; 2010

[Different knock-out constructs and multiple research groups, including Kieffer, Uhl, Yu, Pintar, Loh, with, e.g., Maldonado, Pasternak, Hoellt, Roberts]
COUNTERMODULATION – KAPPA OPIOID RECEPTOR-DYNORPHIN SYSTEM: Cocaine Increases Kappa Opioid Receptor Density in Rat, But Kappa Opioid Receptor Directed “Dynorphins” Also Increase

Dynorphin Acting at the Kappa Opioid Receptor Lowers Dopamine Levels and Prevents Surge After Cocaine

Increase in pdyn Receptor Gene mRNA Levels in the Caudate Putamen in Response to Acute Cocaine, Chronic Cocaine, and Re-exposure to Cocaine – “Binge” Pattern Administration in Mice

Acute Intermittent Morphine Increases Preprodynorphin and Kappa Opioid Receptor mRNA Levels in the Rat Brain

ppDyn mRNA

KOR mRNA

Saline
Morphine

Saline
Morphine

Saline
Morphine

Wang et al., 1999
STRESS: Porsolt Forced Swim Test in Rats: Chromatin Alterations in Response to Forced Swimming Underlie Increased Caudate Putamen Prodynorphin Transcription

Reed et al., Neuroscience, 220:109-118, 2012
COUNTERMODULATION – KAPPA OPIOID RECEPTOR-DYNORPHIN SYSTEM: Dynorphin A_{1-17} and Salvinorin Lower Basal Dopamine Levels in Mouse Striatum: Effect on Cocaine-Induced Dopamine and Persistence of Effect

COUNTERMODULATION OF REWARD — KAPPA OPIOID RECEPTOR: Kappa Opioid Receptor Knock-Out Mice

- No response to classic exogenous KOPr agonists (e.g., in analgesia)
- Decreased severity of heroin withdrawal (including physical and emotional signs)
- Increased basal dopamine release
- Increased cocaine-induced dopamine release
- Decreased effect of stress (e.g., on stress-induced potentiation of cocaine reward)
- Decreased THC-induced aversion, and increased THC-induced reward

[Different knock-out constructs and multiple research groups, including Kieffer, Shippenberg, Chavkin, Pintar]

Butelman and Kreek 2015
Hypothesis: Dynorphin and the Tuberoinfundibular Dopaminergic System

Dynorphin A, by acting directly or indirectly to lower tuberoinfundibular dopaminergic tone, which tonically inhibits prolactin release, causes elevation of serum levels of prolactin in human subjects and non-human primates.

Kreek et al., 1994; 1999; 2013
COUNTERMODULATION – KAPPA OPIOID RECEPTOR-DYNORPHIN SYSTEM: Dose-Response Effects of Dynorphin A\textsubscript{1-13} on Prolactin Levels (Biomarker) in Normal Volunteers – Prolactin Under Direct Inhibitory Control of Tuberoinfundibular Dopamine

Kreek et al., *J. Pharmacol. Exp. Ther.*, 288:260, 1999
Atypical responsivity to stress and stressors may, in part, contribute to the persistence of, and relapse to self-administration of drugs of abuse and addictions. Such atypical stress responsivity in some individuals may exist prior to use of addictive drugs on a genetic or acquired basis, and lead to the acquisition of drug addiction.

Kreek, 1972; 1981; 1982; 1984 ... 2014
STRESS RESPONSIVITY – Heroin, Cocaine, and Alcohol Profoundly Alter Stress Responsive Hypothalamic-Pituitary-Adrenal (HPA) Axis: Normalization During Methadone Treatment

- Acute effects of opiates
- Chronic effects of short-acting opiates (e.g., heroin addiction)

\[\text{Suppression of HPA Axis (decrease levels of HPA hormones)} \]

- Opiate withdrawal effects *
- Opioid antagonist effects
- Cocaine effects *
- Alcohol effects

\[\text{Activation of HPA Axis (increase levels of HPA Hormones)} \]

- Chronic effects of long-acting opiate (e.g. methadone in maintenance treatment)

\[\text{Normalization of HPA Axis} \]

* Our challenge studies have shown that a relative and functional “endorphin deficiency” develops.

STRESS RESPONSIVITY – Dissecting the Hypothalamic-Pituitary-Adrenal Axis in Humans: Selective Opioid Antagonist Testing

Endogenous Opioids (mu – inhibition) (kappa – ? activation)

Mu Opioid Receptor Antagonists

CRF

Arginine Vasopressin

POMC

β-End (↑)

ACTH (↑)

Cortisol (↑)

hypothalamus

anterior pituitary

Kreek, 1984; 1998; 2006; 2014
Compounds Approved for Use in Human Therapeutics with KOPr Partial Agonism in Addition to Mu-Opioid Receptor Antagonism or Partial Agonism

Kreek, Reed, Butelman 2014
Binding Affinity in Cloned Human Receptors

<table>
<thead>
<tr>
<th>Compound</th>
<th>MOP-r affinity Ki (nM)</th>
<th>KOP-r affinity Ki (nM)</th>
<th>DOP-r affinity Ki (nM)</th>
<th>binding selectivity (MOP-r, KOP-r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naltrexone</td>
<td>0.11</td>
<td>0.19</td>
<td>60</td>
<td>MOP-r>KOP-r selectivity</td>
</tr>
<tr>
<td>Nalmefene</td>
<td>0.24</td>
<td>0.083</td>
<td>16</td>
<td>KOP-r>MOP-r selectivity</td>
</tr>
<tr>
<td>Naloxone</td>
<td>0.66</td>
<td>1.2</td>
<td>120</td>
<td>MOP-r>KOP-r selectivity</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>0.21</td>
<td>0.62</td>
<td>2.1</td>
<td>MOP-r>KOP-r selectivity</td>
</tr>
</tbody>
</table>

Selected References from the Bidlack Laboratory (to equalize methodology):
- Naltrexone and naloxone: Wentland et al., 2009 (Bioorg Med Chem Lett)
- Nalmefene: Bart et al., 2005 (Neuropsychopharmacol)
- Buprenorphine: Wentland et al., 2009
- Kreek, Reed, Butelman 2013.
Nalmefene (mu/kappa Directed) Causes Greater HPA Axis Activation Than Naloxone (mu Directed) in Normal Human Volunteers (n=23)

Nalmefene, But Not Naloxone, Causes Modest Increases in Serum Prolactin Levels in Normal Human Male Volunteers: Evidence of Kappa Partial Agonist Activity

Nalmefene (Mu Antagonist, Kappa Partial Agonist) Effects a Modest Elevation in Serum Prolactin Levels

Graph:
- Serum Prolactin (ng/ml) vs. Timepoint (min)
- Placebo, Nalmefene 3mg, Nalmefene 10mg
- Timepoints: 0, 30, 60, 90, 120, 150, 180, 240
- Serum Prolactin AUC (0-90min)
- Placebo, Nalmefene 3mg, Nalmefene 10mg
- P values: P < 0.0005, P < 0.002

Bart et al., Neuropsychopharmacology, 30:417-422, 2005

n = 33
Study in Progress:
ACTH Plasma Levels for Naltrexone and Nalmefene
Normal Volunteers Male & Female (N=15)
Study in Progress: Prolactin Serum Levels for Naltrexone and Nalmefene – Normal Male Volunteers Males (N=10)
Potential pharmacotherapeutic approaches within an addiction-like cycle

Patient engagement with medical system for addiction treatment is not common during the initial acquisition stage.

Acquisition/Escalation
- **Early abstinence / withdrawal:** A selective KOPr antagonist may diminish probability of relapse, by blocking dynorphin induced dysphoria, anhedonia, comorbid depression / anxiety.

Abstinence/Withdrawal
- **Early:**
- **Prolonged:**

Relapse/Re-escalation
- **Pharmacotherapeutic effect**

Prolonged abstinence: A selective KOPr partial agonist may restore homeostatic control of dopaminergic function underlying mood/reward. KOPr partial agonism may also diminish severity of relapse / re-escalation.

Potential biological targets identified (e.g. KOPr)

- **Need**: Compounds selective for this target KOPr (agonist, biased agonist, partial agonist, and antagonist).

- **Major Clinical Concern with High Efficacy Kappa Agonist**: Depressive symptoms; dysphoria; psychotomimesis

- **Actual Concern of Research Clinician**: None. Tolerance develops to psychotomimetic effects. One recent study showed little to no problems when a kappa agonist is given to persons with long term drug abuse or addiction.
Selective Kappa Opioid Receptor Antagonist “OpraKappa” Study – in progress (September 21, 2014 – present)

Group I; Diagnosis: Normal Healthy Volunteers
- Males
- Females

Group II; Diagnosis: Cocaine Dependent
- Males
- Females

Group III; Diagnosis: Early abstinence from cocaine dependence: 1 week to 6 months
- Males
- Females

Group IV; Diagnosis: Drug free former cocaine dependent: abstinence greater than 6 months
- Males
- Females

To date, 34 subjects studied. No adverse effects.
OpraKappa Study Design: Opioid Receptor Antagonist

Night of Admission:
- Beck Depression Inventory (BDI)

Study Day 1: Baseline Day (no drug administered)
- Neuroendocrine testing
 - Beck Depression Inventory (BDI)
 - Mood and Drug Effect (VAS) Scales
 - Cocaine Craving Scale (CCQ) *Cocaine dept. groups only

Study Days 2 & 5: 10 mg OpraKappa administered
- Neuroendocrine testing
 - Beck Depression Inventory (BDI)
 - Mood and Drug Effect (VAS) Scales
 - Cocaine Craving Scale (CCQ) *Cocaine dept. groups only

Study Days 3 & 4: 10 mg OpraKappa administered
- Beck Depression Inventory (BDI)
- Mood and Drug Effect (VAS) Scales
 - Cocaine Craving Scale (CCQ) *Cocaine dept. groups only

Day of Discharge:
- Beck Depression Inventory (BDI)

Kreek in progress, September 2014-present